La masa, en física, es la medida de la inercia, que únicamente para algunos casos puede entenderse como la magnitud que cuantifica la cantidad de materia de un cuerpo. La unidad de masa, en el Sistema Internacional de Unidade es el kilogramos (kg). Es una cantidad escalar y no debe confundirse con el peso, que es una cantidad vectorial que representa una fuerza.
Masa inercial
Artículo principal:masa inercia
La masa inercial para la física clásica viene determinada por la Segunda y Tercera Ley de Newton. Dados dos cuerpos, A y B, con masas inerciales mA (conocida) y mB (que se desea determinar), en la hipótesis dice que las masas son constantes y que ambos cuerpos están aislados de otras influencias físicas, de forma que la única fuerza presente sobre A es la que ejerce B, denominada FAB, y la única fuerza presente sobre B es la que ejerce A, denominada FBA, de acuerdo con la Segunda Ley de Newton:
. FAB= mA aA
FBA=mB a B
donde aA y aB son las aceleraciones de A y B, respectivamente. Es necesario que estas aceleraciones no sean nulas, es decir, que las fuerzas entre los dos objetos no sean iguales a cero. Una forma de lograrlo es, por ejemplo, hacer colisionar los dos cuerpos y efectuar las mediciones durante el choque.
La Tercera Ley de Newton afirma que las dos fuerzas son iguales y opuestas:
. FAB= -fBA
Sustituyendo en las ecuaciones anteriores, se obtiene la masa de B como
. mB= aA/aB / mA
Así, el medir aA y aB permite determinar mB en relación con mA, que era lo buscado. El requisito de que aB sea distinto de cero hace que esta ecuación quede bien definida.
En el razonamiento anterior se ha supuesto que las masas de A y B son constantes. Se trata de una suposición fundamental, conocida como la conservación de la masa, y se basa en la hipótesis de que la materia no puede ser creada ni destruida, sólo transformada (dividida o recombinada). Sin embargo, a veces es útil considerar la variación de la masa del cuerpo en el tiempo; por ejemplo, la masa de un cohete decrece durante su lanzamiento. Esta aproximación se hace ignorando la materia que entra y sale del sistema. En el caso del cohete, esta materia se corresponde con el combustible que es expulsado; la masa conjunta del cohete y del combustible es constante.
Masa gravitacional
Considérense dos cuerpos A y B con masas gravitacionales MA y MB, separados por una distancia rAB. La Ley de la Gravitación de Newton dice que la magnitud de la fuerza gravitatoria que cada cuerpo ejerce sobre el otro es
F=GMA MB / R AB 2
donde G es la constante de gravitación universal La sentencia anterior se puede reformular de la siguiente manera: dada la aceleración g de una masa de referencia en un campo gravitacional (como el campo gravitatorio de la Tierra), la fuerza de la gravedad en un objeto con masa gravitacional M es de la magnitud
. F= Mg
Esta es la base según la cual las masas se determinan en las balanzas. En las balanzas de baño, por ejemplo, la fuerza F es proporcional al desplazamiento del muelle debajo de la plataforma de pesado (véase Ley de Hooke), y la escala está calibrada para tener en cuenta g de forma que se pueda leer la masa M.
Equivalencia de la masa inercial y la masa gravitatoria
Se demuestra experimentalmente que la masa inercial y la masa gravitacional son iguales —con un grado de precisión muy alto—. Estos experimentos son esencialmente pruebas del fenómeno ya observado por Galileo de que los objetos caen con una aceleración independiente de sus masas (en ausencia de factores externos como el rozamiento).
Supóngase un objeto con masas inercial y gravitacional m y M, respectivamente. Si la gravedad es la única fuerza que actúa sobre el cuerpo, la combinación de la segunda ley de Newton y la ley de la gravedad proporciona su aceleración como:
a= M/m g
Por tanto, todos los objetos situados en el mismo campo gravitatorio caen con la misma aceleración si y sólo si la proporción entre masa gravitacional e inercial es igual a una constante. Por definición, se puede tomar esta proporción como 1.
Masa inercial
Artículo principal:masa inercia
La masa inercial para la física clásica viene determinada por la Segunda y Tercera Ley de Newton. Dados dos cuerpos, A y B, con masas inerciales mA (conocida) y mB (que se desea determinar), en la hipótesis dice que las masas son constantes y que ambos cuerpos están aislados de otras influencias físicas, de forma que la única fuerza presente sobre A es la que ejerce B, denominada FAB, y la única fuerza presente sobre B es la que ejerce A, denominada FBA, de acuerdo con la Segunda Ley de Newton:
. FAB= mA aA
FBA=mB a B
donde aA y aB son las aceleraciones de A y B, respectivamente. Es necesario que estas aceleraciones no sean nulas, es decir, que las fuerzas entre los dos objetos no sean iguales a cero. Una forma de lograrlo es, por ejemplo, hacer colisionar los dos cuerpos y efectuar las mediciones durante el choque.
La Tercera Ley de Newton afirma que las dos fuerzas son iguales y opuestas:
. FAB= -fBA
Sustituyendo en las ecuaciones anteriores, se obtiene la masa de B como
. mB= aA/aB / mA
Así, el medir aA y aB permite determinar mB en relación con mA, que era lo buscado. El requisito de que aB sea distinto de cero hace que esta ecuación quede bien definida.
En el razonamiento anterior se ha supuesto que las masas de A y B son constantes. Se trata de una suposición fundamental, conocida como la conservación de la masa, y se basa en la hipótesis de que la materia no puede ser creada ni destruida, sólo transformada (dividida o recombinada). Sin embargo, a veces es útil considerar la variación de la masa del cuerpo en el tiempo; por ejemplo, la masa de un cohete decrece durante su lanzamiento. Esta aproximación se hace ignorando la materia que entra y sale del sistema. En el caso del cohete, esta materia se corresponde con el combustible que es expulsado; la masa conjunta del cohete y del combustible es constante.
Masa gravitacional
Considérense dos cuerpos A y B con masas gravitacionales MA y MB, separados por una distancia rAB. La Ley de la Gravitación de Newton dice que la magnitud de la fuerza gravitatoria que cada cuerpo ejerce sobre el otro es
F=GMA MB / R AB 2
donde G es la constante de gravitación universal La sentencia anterior se puede reformular de la siguiente manera: dada la aceleración g de una masa de referencia en un campo gravitacional (como el campo gravitatorio de la Tierra), la fuerza de la gravedad en un objeto con masa gravitacional M es de la magnitud
. F= Mg
Esta es la base según la cual las masas se determinan en las balanzas. En las balanzas de baño, por ejemplo, la fuerza F es proporcional al desplazamiento del muelle debajo de la plataforma de pesado (véase Ley de Hooke), y la escala está calibrada para tener en cuenta g de forma que se pueda leer la masa M.
Equivalencia de la masa inercial y la masa gravitatoria
Se demuestra experimentalmente que la masa inercial y la masa gravitacional son iguales —con un grado de precisión muy alto—. Estos experimentos son esencialmente pruebas del fenómeno ya observado por Galileo de que los objetos caen con una aceleración independiente de sus masas (en ausencia de factores externos como el rozamiento).
Supóngase un objeto con masas inercial y gravitacional m y M, respectivamente. Si la gravedad es la única fuerza que actúa sobre el cuerpo, la combinación de la segunda ley de Newton y la ley de la gravedad proporciona su aceleración como:
a= M/m g
Por tanto, todos los objetos situados en el mismo campo gravitatorio caen con la misma aceleración si y sólo si la proporción entre masa gravitacional e inercial es igual a una constante. Por definición, se puede tomar esta proporción como 1.
q estas hablando
ResponderEliminar